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1 Introduction

Statistical distributions are very useful in describing and predicting real world phenom-
ena. Adding parameters to a well-established distribution is an effective way to enlarge
the behavior range of this distribution and to obtain more flexible family of distribu-
tions to model various types of data. In the last few years, several ways of generating
new probability distributions from classic ones were developed and discussed. Some well-
known generalized classes (or generators) are odd exponentiated half-logistic-G family of
distributions introduced by Afify et al. (2016) , Transformed-transformer (T-X) by Alza-
atreh et al. (2013) , Kumaraswamy-G family of distributions introduced by Cordeiro and
De Castro (2011) , the general rank transmutation (GRT) defined by Shaw and Buckley
(2009) and the beta generalized family of distributions by Eugene et al. (2002).

The Fréchet (Fr) model is one of the most important distributions in modeling ex-
treme values. The Fr model was originally proposed by Fréchet (1927). It has many
applications in ranging, accelerated life testing, earthquakes, the floods, the wind speeds,
the horse racing, the rainfall, queues in supermarkets and sea waves. One can find more
details about the Fr model in the literature for example:Mead (2014) introduced Ku-
maraswamy Fr distribution. Mahmoud and Mandouh (2013) introduced transmuted Fr
distribution. Barreto-Souza et al. (2011) introduced beta Fr distribution.Zaharim et al.
(2009) applied the Fr distribution for analyzing the wind speed data.Nadarajah and Kotz
(2008) discussed the sociological models based on Fr random variables (RVs). Nadarajah
and Kotz (2003) investigated the exponentiated Fr distribution.

A random variable X is said to have the Fr distribution if its probability density func-
tion (PDF) and cumulative distribution function (CDF) are given respectively by

g(x; a, b) = abx−a−1e−bx−a, x ≥ 0, a, b > 0. (1)

G(x; a, b) = e−bx−a
. (2)

Fattah and Ahmed (2018) proposed a new method for generating families of continuous
distributions, called the composed -G Q family or shortly (C-G Q) family. This family
based on the star-shaped property. They illustrated a set of important results in the
theoretical reliability hold for a new family. These results make the family more impor-
tant in applications.
Definition: Composed – G Q family
Let G and Q be two arbitrary continuous cumulative distribution functions of non-
negative absolutely continuous random variables, G be strictly increasing on its support,
and G(0)=Q(0). Now define a cumulative distribution function (cdf), F , out of G and
Q (called the composed- G Q family shortly (C- G Q)) as follows [see Fattah and Ahmed
(2018)]:

F (x) = G(x,Q(x)), ∀x (3)
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The corresponding probability density function (pdf) is given by

f(x) = g(x.Q(x))(xq(x) +Q(x)) (4)

Where g and q are the corresponding densities of G and Q, respectively.
The rationale of using composed- G Q family is that this family has many features, such
as this family is much richer in applications and the most important of these features
is that it based on the star-shaped property which grantees the existences of some well
know properties for the generated classes and distributions for any non-negative random
variables. We will show a set of important results in the theoretical reliability hold for
our newly introduced family. These results make the family much richer in applications.
These results extracted from Barlow (1975) and are listed below for convenience.

Let F and G be continuous distributions, G be strictly increasing on its support, and
F (0) = G(0) = 0. Then, F is star-shaped with respect to G (written <

∗
G) if G−1(F (x))

is star-shaped,

that is,

(
1

x

)
G−1(F (x)) is increasing for x ≥ 0.

Then:

a. F <
c
G implies F <

∗
G, (where <

c
implies the convex ordering).

b. The relationship F <
c
G is unaffected by a translation transformation of either F

and G, assuming the random variables remain non-negative.

c. The relationship F <
∗
G may be destroyed by a translation transformation of either

F and G, assuming the random variables remain non-negative.

d. Let G(x) = 1 − e−λx, with F (0) = 0, then F <
c
G, is equivalent to F having an

increasing failure rate (IFR).

e. Let G(x) = 1 − e−λx, with F (0) = 0, then F <
c
G, is equivalent to F having an

increasing failure rate (IFR).

The Single Crossing Property. Let F <
∗ G, then

i. F (x) crosses G(θx) by one, at most, and from above, as x increases from 0 to ∞,
for each θ > 0.

ii. If, in addition, F and G have the same mean, then a single crossing does occur,
and F has smaller variance then G.

iii. If we take G to be exponential distribution, then F must be IFRA by the previous
results.
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To this end, we present the following arguments.
We can see that the new generator enjoys the star-shaped property, which means any

distribution derived based on the new family enjoys the results form a. to e.
Suppose that G(x) and Q(x) are the CDF'of the exponential distribution and are re-

spectively given by G(x;λ) = 1−e−λx and Q(x;β) = 1−e−βx (for x > 0 and β, λ >
0).
Then, a new distribution called composed-exponential exponential (C-EE), can be

derived based on (3), and its CDF is given by

F (x;β, λ) = G(x ·Q(x)) = 1− e−λx·(1−e−βx), x > 0, β, λ > 0

while, its corresponding pdf is given by

f(x;β, λ) = λe−λx·(1−e−βx)
(
1 + (βx− 1)e−βx

)
Now, we check the existence of the star-shaped property for the new generated model
C-EE.

i. For any given values of β, λ, and θ then F (x) crosses G(θx) at most one, and from
above, as x increases from 0 to ∞, for θ > 0.

While F (x) and G(θx) are respectively the survival functions of C–EE and exponential

distribution, which are respectively given by F (x) = e−λx·(1−e−βx) and G(θx) = e−λθx.
While F (x) and G(θx) are respectively the survival function of C – EE and exponential

distribution which are respectively given by F (x) = e−λx.(1−e−βx) and G(θx) = e−λθx.
Figure 1 below shows this property visually for a given values for the unknown parame-
ters.
Figure 1 show that F (x) crosses G(θx) at most one for a different values of β, λ and

θ.

ii. Let λ = 1.5, β = 3.2 and θ = 0.826507, then F and G have the same mean, so
a single crossing does occur, and F has smaller variance than G. Figure 2 below
shows this property visually for a given values for the unknown parameters.

At λ = 1.5, β = 3.2 and θ = 0.826507, a single crossing does occur and the variance
of F is 0.649751, while the variance of G at same values is 0.402951. It's clearly that F
have smaller variance than G.

iii. If G be exponential distribution, then F must be IFRA

The cumulative hazard rate functions of the composed-exponential exponential (C-
EE) is given by

H(x) = − lnF (x) = λx
(
1− e−βx

)
where F (x) is the survival function of C-EE distribution. Then,

H(x)

x
=

λx
(
1− e−βx

)
x

= λ
(
1− e−βx

)
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(a) (b)

Figure 1: (a) and (b) The F (x) and G(θx) at different parameter values.

Figure 2: The F (x) and G(θx) at λ = 1.5, β = 3.2 and θ = 0.826507 λ = 1.5, β = 3.2
and θ = 0.826507
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for λ, β > 0 the quantity e−βxcontrols the behavior of the function H(x)
x , while e−βxis a

decreasing function, so 1− e−βx is an increasing function, then we can conclude that F
is IFRA.
The main aim of this paper is to propose and study a new extention of the Fréchet
distribution based on the method of composed-G Q family (C-G Q). The main purpose
of the new model is that the additional parameter can give several desirable properties
and more flexibility in the form of the hazard and density functions. This new distri-
bution called composed Fréchet- exponential distribution (C-FE), which may be useful
in representing the extreme values. The rest of the paper is organized as follows. In
Section 2, The Composed-Fréchet Generated family and sub-model of the new generator
called the composed Fréchet- exponential (C-F E) distribution are proposed. There is
a demonstration of the graphs of the probability density function (pdf) and cumulative
distribution function (cdf) of C-FE. In Section 3, the survival and hazard functions are
studied. In Section 4, the statistical properties are obtained. In Section 5 the MLEs are
obtained for the unknown parameters. In Section 6, the Bayes estimators of the unknown
parameters using MCMC are introduced. In Section 7, we compare the performance of
MLE and Bayesian estimates based on simulation studies. While applications to real-life
data sets are provided in Section 8. Finally, in Section 9, the paper is concluded.

2 The Composed-Fréchet Generated Family

Suppose G is the cdf of Fréchet distribution, which given in (1), a new Fréchet family
can be introduced using (3) and (4). This family will be named the composed Fréchet
Q family (C-Fréchet Q (C-FQ)) and its cdf is given by

F (x; a, b, λ) = e−b(x·Q(x))−a

(5)

with corresponding pdf

f(x; a, b, λ) = ab (x ·Q(x))−a−1 e−b(x·Q(x))−a

· {x · q(x) + x ·Q(x)} (6)

2.1 The Composed-Fréchet Exponential Distribution

Substituting q(x; λ) = λe−λx , and accordingly Q(x, λ) = 1 − e−λx (where x, λ > 0)
into (5) and (6), one gets the composed- Fréchet exponential (C-FE) distribution with
cdf

F (x; a, b, λ) = e−b(x(1−e−λx))
−a

(7)

and its corresponding pdf is

f(x; a, b, λ) = ab
(
x(1− e−λx)

)−a−1
e−b(x(1−e−λx))

−a

·
{
x · λe−λx + 1− e−λx

}
(8)

Figure (3) illustrates plots of the pdf and cdf of C-FE distribution for selected values of
the parameters.
Figure 3 illustrates the plots of the pdf and cdf of C-FE distribution for different values

of the parameters, which the plot of the pdf show that the distribution is unimodal. Thus
f (x ) has a flat and relatively long right-hand tail.
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Figure 3: Plots of pdf and cdf of C-FE model for some parameters values.

3 The Survival and Hazard Functions

The survival and hazard functions are important for lifetime modeling in reliability
studies. These functions are used to measure failure distributions and predict reliability
lifetimes. The survival, hazard and reverse hazard functions of the C-FE distribution
are defined respectively, by

S(x, a, b, λ) = 1− F (x) = 1− e−b(x(1−e−λx))
−a

(9)

h(x, a, b, λ) =
f(x)

1− F (x)
=

ab
(
x(1− e−λx)

)−a−1
.{x.λe−λx + 1− e−λx}

e−b(x(1−e−λx))
−a

− 1
, (10)

and

r(x) =
f(x)

F (x)
= ab

(
x(1− e−λx)

)−a−1
.{x.λe−λx + 1− e−λx} (11)

Figure (4) illustrates plots of the survival function of C-FE distribution for selected
values of the parameters.
Figure (5) illustrates plots of the hazard function of C-FE distribution for selected

values of the parameters.
The behavior of h(x) was studied for different values of parameters a and fixed b=1

and λ = 2 by Glaser’s lemma ( Glaser (1980) ) following:

� If a ≤ 1, then h(x) has a decreasing failure rate which was satisfied in Figure (5c).

� If a > 1, then h(x) has upside down bathtub failure rate which was satisfied in
Figure (5d).

Figure (6) illustrates the plots of the reversed hazard function of C-FE distribution
for selected values of the parameters.
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Figure 4: Plots of survival function of C-FE model for some parameters values.

(c) (d)

Figure 5: Plots of hazard function of C-FE model for some parameters values.
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Figure 6: Plots of reversed hazard function of C-FE model for some parameters values.

4 Statistical Properties

This section explains the statistical properties of the C-FE distribution in general terms.

4.1 Moments

For a C-FE random variable X, the rthorder moment about zero are given by

E (Xr) =
∞∑

i=k=0

Cik
Γ(r − a(i+ 1))

λr−a(i+1)

[
1

kr−a(i+1)
+

r − a(i+ 1)

(1 + k)r−a(i+1)

]
(12)

Where,

Cik = (−1)i+kabi+1

(
−a(i+ 1)− 1

k

)
Proof
See Proof 1 in appendix.

4.2 Moment Generating Function

The moment generating function (mgf) of the C-FE random variable X is obtained as

MX(t) =
∞∑
r=0

tr

r!
E (xr)
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MX(t) =
∞∑
r=0

∞∑
i=k=0

(−1)i+kabi+1 t
r

r!

(
−a(i+ 1)− 1

k

)
Γ(r − a(i+ 1))

λr−a(i+1)
·

·
[

1

kr−a(i+1)
+

r − a(i+ 1)

(1 + k)r−a(i+1)

]
.

4.3 Quantile Function

F−1(.) = U

xq

(
1− e−λxq

)
+

(
b

log(u)

) 1
a

= 0 (13)

where, X ∼ U(0, 1)

The above equation has no closed form solution in xq, so one has to use a numerical
technique such as a Newton- Raphson method to get an approximate value of the quan-
tile. If we put q=0.5 we will get the median of C-FE distribution. As we will be seen in
Section 6.

4.4 Order Statistics

LetX1;n, X2;n, X3;n, . . . , Xi;n be the order statistics of a random sampleX1, X2, X3, . . . , Xn

observed from C-FE distribution with cdf F (x) and pdf f(x)then the density function
of Xi;n is given by

fi;n(x) =
n!

(i− 1)!(n− i)!
krjab

r+1
(
x
(
1− e−λx

))−a(1+r)−1
·
{
x · λe−λx + 1− e−λx

}
(14)

Where,

krj =
∑∞

r=j=0
(−1)j+r

r!

(
n− i

j

)
(i+ j)r.

proof

See Proof 2 in appendix.

4.5 Stochastic Ordering

The stochastic ordering of positive continuous random variables is an important tool
for judging their comparative behavior. A continuous random variable X is said to be
smaller than a continuous random variable Y in the

(i) Stochastic order ( x ≤sty) if FX(x) ≥ FY (x)for all x.

(ii) Hazard rate order ( x ≤hry) if hX(x) ≥ hY (x)for all x.

(iii) Likelihood ratio order ( x ≤Lr y) if
FX(x)
FY (x) decreases in x.
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C-FE distribution is ordered with respect to the strongest ‘likelihood ratio’ ordering
as shown in the following
Suppose random variables X and Y are distributed according to C-FE (a1, b1, λ1) and

C-FE (a2, b2, λ2). Then, the following results hold true. If b1 = b2, λ1 = λ2 and a2 <
a1, then x ≤Lr y, x ≤hr y and x ≤st y.

∂
∂x log

fX(x)
fY (y) = − (a1+1)k(x;λ1)

(x(1−e−λ1x))
+ (a2+1)e(x;λ2)

(x(1−e−λ2x))
+ a1b1 (k (x;λ1))

(
x
(
1− e−λ1x

))−a1−1

−a2b2 (e (x;λ2))
(
x
(
1− e−λ2x

))−a2−1

+

[
(g(x;λ2))(2λ1e−λ1x−λ1

2xe−λ1x)−(h(x;λ1))(2λ2e−λ2x−λ2
2xe−λ2x)

(h(x;λ1))(g(x;λ2))

]
.

Proof: We have

fX(x)

fY (y)
=

a1b1
(
x(1− e−λ1x)

)−a1−1
e−b1(x(1−e−λ1x))

−a1

.{x.λ1e
−λ1x + 1− e−λ1x}

a2b2 (x(1− e−λ2x))
−a2−1

e−b2(x(1−e−λ2x))
−a2

.{x.λ2e−λ2x + 1− e−λ2x}

Thus,

log fX(x)
fY (y) = log

(
a1b1
a2b2

)
− (a1 + 1) log

(
x
(
1− e−λ1x

))
+ (a2 + 1) log

(
x
(
1− e−λ2x

))
−b1

(
x
(
1− e−λ1x

))−a1
+ b2

(
x
(
1− e−λ2x

))−a2
+ log

(
x.λ1e

−λ1x + 1− e−λ1x

x.λ2e−λ2x + 1− e−λ2x

)
∂
∂x log

fX(x)
fY (y) = − (a1+1)(k(x;λ1))

(x(1−e−λ1x))
+ (a2+1)k(x;λ2)

(x(1−e−λ2x))
+ a1b1 (k (x;λ1))

(
x
(
1− e−λ1x

))−a1−1

−a2b2 (k (x;λ2)) .
(
x
(
1− e−λ2x

))−a2−1

+
[
h(x;λ2)
h(x;λ1)

] [
h(x;λ2)(2λ1e−λ1x−λ1

2xe−λ1x)−h(x;λ1)(2λ2e−λ2x−λ2
2xe−λ2x)

(h(x;λ2))
2

]
.

Now if b1 = b2, λ1 = λ2 and a2 < a1, then ∂
∂x log

fx(x)
fy(y)

≤ 0, which implies

that x ≤Lr y, x ≤hr y and x ≤st y.
Where,
h (x;λi) = x.λie

−λix + 1− e−λix , k (x;λi) = 1 + λixe
−λix − e−λix.

and i = 1, 2.

5 Maximum Likelihood Estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the unknown
parameters of the C-FE distribution from complete samples only.
Let x1, x2, . . . , xn be a random sample of size n from C-FE (x;∅), ∅ = (a, b, λ).

The log likelihood function for the vector of parameters ∅ = (a, b, λ) can be written as
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logl(x) = n ln(a) + n ln(b)− (a+ 1)
n∑

i=1

ln
(
xi

(
1− e−λxi

))
− b

n∑
i=1

(
xi

(
1− e−λxi

))−a

+
∑n

i=1 ln
{
xi.λe

−λxi + 1− e−λxi
}
.

By taking the partial derivatives of the log-likelihood function with respect to a, b and
λ, we obtain the components of the score vector as follows

∂ lnL

∂a
=

n

a
−

n∑
i=1

ln (u (xi;λ)) + b

n∑
i=1

v (xi; a, λ) ln (u (xi;λ)) (15)

∂ lnL

∂b
=

n

b
−

n∑
i=1

v (xi; a, λ) (16)

∂ lnL

∂λ
= −(a+ 1)

n∑
i=1

x2i e
−λxi

u (xi;λ)
+ ab

n∑
i=1

x2i e
−λxi

v (xi; a, λ)

u (xi;λ)
+

2e−λxi − λx2i e
−λxi

c (xi;λ)
(17)

Where,

v (xi; a, λ) = u−a (xi;λ) =
[
xi

(
1− e−λxi

)]−a
,

u (xi;λ) = xid (xi;λ) ,

d (xi;λ) =
(
1− e−λxi

)
,

c (xi;λ) = xi.λe
−λxi + d (xi;λ) .

and i = 1, . . . , n
The maximum likelihood estimate of b, say b̂ can be obtained by solving Equation

(16) as

b̂ =
n∑n

i=1 v
(
xi; â, λ̂

)
The MLEs of a and λ can be determined numerically from the solution of nonlinear

system of Equations (15) and (17); subsequently, these solutions will yield the MLE
estimators â, λ̂.

To construct asymptotic confidence intervals, we need to obtain the observed Fisher
information matrix. which is given by

F̂ = −


∂2 lnL
∂a2

∂2 lnL
∂a∂b

∂2 lnL
∂a∂λ

∂2 lnL
∂a∂b

∂2 lnL
∂b2

∂2 lnL
∂b∂λ

∂2 lnL
∂a∂λ

∂2 lnL
∂b∂λ

∂2 lnL
∂λ2


∅=∅̂

(18)
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Where,
∂2lnL
∂a2

= n
a2

− b
∑n

i=1 v(xi; a, λ) (ln (u(xi;λ)))
2,

∂2lnL
∂b2

= −n
b2

,
∂2lnL
∂λ2 = (a+ 1)

∑n
i=1

[
xi

3e−λxi u(xi;λ)+xi
4e−2λxi

u2(xi;λ)

]
− ab

∑n
i=1

[
axi

3e−2λxi v(xi;a,λ)
u(xi;λ)

]
+

c(xi;λ)(λxi
3e−λxi−2xie

−λxi−xi
2e−λxi)−(2e−λxi−λxi

2e−λxi)(λxi
2e−λxi+2xie

−λxi)
(c(xi;λ))

2 ,

∂2lnL
∂a∂b = n

a − n
b −

∑n
i=1 v (xi; a, λ) ln (u (xi;λ)),

∂2lnL
∂b∂λ = n

a −
∑n

i=1
xi

2e−λxi

u(xi;λ)
+ abxi

2e−λxi v(xi;a,λ)
u(xi;λ)

+ 2e−λxi−λxi
2e−λxi

c(xi;λ)
.

Obtaining the inverse of the matrix F̂ , which we dented by V̂ , provides the asymptotic
variance co-variances matrix for ∅ = (a, b, λ). Assume that the regularity condition is
satisfied, use (18) to get a 100 (1-γ) % confidence intervals for the parameters a, b and
λ as follows

â± z γ
2

√
V̂11 , b̂± z γ

2

√
V̂22 , λ̂± z γ

2

√
V̂33.

Where z γ
2
is the upper γthof the standard normal distribution.

6 Bayesian Estimation

In this section, the MCMC algorithm for computing the Bayes estimates of parameters a,
b and λ of the C-FE distribution is used. MCMC is one of the best techniques for obtain-
ing the Bayes estimates, for more details about the MCMC methods, see, e.g., Gelfand
and Smith (1990) , Casella and Robert (2008) and Upadhyay and Gupta (2010). The
Metropolis-Hastings algorithm (MH) is used, to generate samples from the conditional
posterior distributions, and then we compute the Bayes estimates. Assume that a, b and
λ are independent and have prior distributions π1, π2, π3 respectively. Prior for each a,
b and λ is assumed to follow a gamma distribution. We use gamma distribution as prior
distribution because Abbas et al. (2013) used the gamma distribution as a prior distri-
bution in Bayesian estimation for Fréchet distribution and this will be more appropriate
in Bayesian estimation for C-FE distribution.

π1(a) =
m1

q1aq1−1e−m1a

Γ(q1)
a > 0, m1, q1 > 0

π2(b) =
m2

q2bq2−1e−m2b

Γ(q2)
b > 0, m2, q2 > 0

and

π3(λ) =
m3

q3λq3−1e−m3λ

Γ(q3)
λ > 0, m3, q3 > 0

Here, hyper-parameters m1, q1, m2, q2, m3and q3 are chosen to reflect the prior knowl-
edge about the unknown parameters. Suppose that we have n number of samples
available from C-FE distribution, and the maximum likelihood estimates of (a, b, λ)

are
(
âj , b̂j , λ̂j

)
, j = 1, 2, 3, . . . , n. Then equating the mean and variance of
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(
âj , b̂j , λ̂j

)
with the mean and variance of the suggested priors (gamma priors), we

can get [see Dey et al (2016)]

1

n

n∑
j=0

âj =
q1
m1

,
1

n− 1

n∑
j=0

âj − 1

n

n∑
j=0

âj

2

=
q1
m1

2
(19)

1

n

n∑
j=0

b̂j =
q2
m2

,
1

n− 1

n∑
j=0

b̂j − 1

n

n∑
j=0

b̂j

2

=
q2
m2

2

(20)

and

1

n

n∑
j=0

λ̂j =
q3
m3

,
1

n− 1

n∑
j=0

λ̂j − 1

n

n∑
j=0

λ̂j

2

=
q3
m2

3

(21)

Solving Equations (19), (20) and (21), we get the estimated hyper-parameters as
follows:

b1 =
( 1
n

∑n
j=0 â

j)
2

1
n−1

∑n
j=0(âj−

1
n

∑n
j=0 â

j)
2 , m1 =

( 1
n

∑n
j=0 â

j)
2

1
n−1

∑n
j=0(âj−

1
n

∑n
j=0 â

j)
2 ,

b2 =
( 1
n

∑n
j=0 b̂

j)
2

1
n−1

∑n
j=0(b̂j−

1
n

∑n
j=0 b̂

j)
2 , m2 =

( 1
n

∑n
j=0 b̂

j)
2

1
n−1

∑n
j=0(b̂j−

1
n

∑n
j=0 b̂

j)
2 ,

and

b3 =
( 1
n

∑n
j=0 λ̂

j)
2

1
n−1

∑n
j=0(λ̂j− 1

n

∑n
j=0 λ̂

j)
2 , m3 =

( 1
n

∑n
j=0 λ̂

j)
2

1
n−1

∑n
j=0(λ̂j− 1

n

∑n
j=0 λ̂

j)
2 .

Therefore, the joint prior distribution of a, b and λ can be written as

π(a, b, λ) =
mq1

1 aq1−1e−m1a

Γ(q1)
· m

q2
2 bq2−1e−m2b

Γ(q2)
· m

q3
3 λq3−1e−m3λ

Γ(q3)
a, b, λ > 0, mi, bi > 0.

(22)
where i = 1,2,3
The joint posterior density function of a, b and λ can be written as

π (a, b, λ|x) = k
m1

q1an+q1−1e−m1a

Γ (q1)

m2
q2bn+q2−1e−m2b

Γ (q2)

m3
q3λq3−1e−m3λ

Γ (q3)

.
∏n

i=1

(
xi(1− e−λxi)

)−a−1
.e−b

∑n
i=1(xi(1−e−λxi ))

−a

n∏
i=1

{
xi · λe−λxi + 1− e−λxi

}
(23)

where k is the normalizing constant which is given by

k−1 =
∫∞
0

∫∞
0

∫∞
0

m1
q1an+q1−1e−m1a

Γ(q1)
m2

q2bn+q2−1e−m2b

Γ(q2)
m3

q3λq3−1e−m3λ

Γ(q3)
.

.
∏n

i=1

(
xi(1− e−λxi)

)−a−1
.e−b

∑n
i=1(xi(1−e−λxi ))

−a
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.
∏n

i=1 {xi.λe−λxi + 1− e−λxi} dadbdλ.
Therefore, the Bayes estimate of any function of a,b and λ, say g(a, b, λ), under the

squared error loss function, is given by

g̃(a, b, λ) = Ea, b, λ|x (g(a , b λ)) =
∫∞
0

∫∞
0

∫∞
0 g(a , b λ)π (a, b, λ|x)

.
dadbdλ.

It is clear from Equation (23) that there is no closed form for the estimators, and,
hence, MCMC procedure is suggested to compute the Bayes estimates. We consider the
Metropolis-Hastings (M H) algorithm with a normal proposal distribution to generate
samples from the conditional posterior distributions. The following is the used code to
generate the required by samples M H algorithm:

1) Set initial value of ϕ as ϕ = ϕ(0) , and set i = 1, where ϕ = ( a, b, λ).

2) Set ϕ = ϕ(i−1).

3) Generate a proposal, ∅∗, following a multivariate normal, N(ϕ, sϕ), where sϕ is
the standard deviation (we suggest sϕ = (0.001, 0.003, 0.002).

4) Calculate the acceptance probability, τ = min
(
1, π(ϕ

∗|x)
π(ϕ|x)

)
.

5) Generate U ∼ U(0, 1).

6) If ≤ τ, set ϕ(i) = ϕ∗, otherwise, set ϕ(i) = ϕ(i−1) .

7) Set i = i+ 1.

8) Repeat steps 2 to 7 by N times and obtain ϕ(j), j = 1, 2, . . . , N.

After getting MCMC samples from the posterior distribution, we can find
the Bayes estimate for the parameters in the following way:

â =
1

N −B

N∑
i=B+1

a(i),

b̂ = 1
N−B

∑N
i=B+1 b

(i),

and

λ̂ = 1
N−B

∑N
i=B+1 λ

(i).

where B is the number of burn-in samples. Then we calculate the highest posterior
density (HPD) intervals for the unknown parameters of the C-FE distribution using the
method of Chen and Shao (1999).

One can also refer to Kundu and Pradhan (2009) and Dey and Dey (2014) for a review
on this method. We will use the samples drawn using the proposed MH algorithm to
construct the interval estimates. Let us assume that Π (ϕ|X)
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denotes the posterior distribution function of ϕ. Let us further suppose that ϕ(p)is the
pth quantile of ϕ, that is, ϕ(p)= inf{λ; Π (ϕ∗|X)}, where 0 < p < 1. Notice that for a
given ∅∗a simulation consistent estimator of Π (ϕ∗|X) can be estimated as

Π (ϕ∗|X) =
1

N −B

N∑
i=B+1

Iϕ≤ϕ∗

Here , I∅≤∅∗ is the indicator function. Then the corresponding estimate is obtained
as

Π̂ (ϕ∗|X) =


0 if ϕ∗ < ϕB∑i

j=B wj if ϕ(i) < ϕ∗ <

1 if ϕ∗ > ϕN

ϕ(i+1)

where wj =
1

N−B and ϕ(j) are the ordered values of ϕ(j).

Now, i = B, . . . , N , ϕ(p)can be approximated by

ϕ(p) =

{
∅(B) if p = 0

∅(i) if
∑i−1

j=B wj < p <
∑i

j=B wj .

Now, to obtain a 100 (1-p) % HPD credible interval for ϕ, letRj =

(
∅̂( 1

N ), ∅̂
(

j+(1−p)N
N

))
for j = B. . . ,[pN ], here [a] denotes the largest integer less than or equal to a. Then choose
Rj among all the R̀js such that it is smallest width.

7 Simulation Study

In this section, we compare the performances of MLEs and Bayesian estimates using the
MCMC method. Sample of size {n=100, 150, 200, 250, 300, 350} are used to generate
observations from a C-FE distribution with different true values. We assume that the
number of repetition is 1000, then we calculate their means, means square errors (MSE)
and associated 95% confidence interval (CI) of each parameter. For Bayesian estimations,
the MCMC method will be used according to MH Algorithm. The number of iteration
for this algorithm is N = 10000 with burn-in period B = 2000. Each prior for a, b and λ
is assumed to be gamma distribution with hyper parameters (b1 = 12, m1 = 5.8, b2 =
14, m2 = 5.6, b3 = 1.5, m3 = 0.41 ).Then the Bayes estimates and HPD interval
estimates are obtained using the technique of Chen and Shao (1999). The performances
of the estimators for both methods using MSE and average interval lengths (AIL) with
coverage percentages (CP) are reported in Tables (1-6). From Tables (1-6), we notice
that;

i. The MSE of the Bayes estimates are better than their corresponding MSE of MLEs
for all samples.

ii. The average bias of the Bayesian is less than that of the MLEs in all cases.
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iii. The 95% Bayes intervals are smaller than the asymptotic confidence intervals of
MLEs for all cases.

Table 1: Estimates Values and MSEs (With a = 10, b = 10, λ = 10)

n Parameters
MLE Bayesian

Parameters estimates MSE Bias Bayes MSE Bias

100

a 10.0592 0.8224 0.0592 9.9945 0.0020 -0.0055

b 10.2057 6.0938 0.2057 9.9648 0.0194 -0.0352

λ 9.7361 2.7981 -0.2638 9.9973 0.0079 -0.0027

150

a 10.0249 0.6595 0.0249 9.9946 0.0020 -0.0054

b 10.0665 5.4824 0.0664 9.9612 0.0193 -0.0388

λ 9.6397 3.4994 -0.3603 10.0021 0.0073 0.0021

200

a 9.9221 0.5900 -0.0779 9.9999 0.0010 -0.00004

b 9.7612 5.3199 -0.2388 10.0018 0.0093 0.0018

λ 9.4499 4.7484 -0.5500 9.9986 0.0044 -0.0014

250

a 9.8771 0.6169 -0.1228 9.9994 0.0010 -0.0006

b 9.5302 6.1636 -0.4698 9.9967 0.0087 -0.0032

λ 9.2598 6.4087 -0.7402 9.9992 0.0043 -0.0008

300

a 9.9079 0.4598 -0.0920 9.9997 0.0009 -0.0003

b 9.6605 4.4881 -0.3394 9.9963 0.0090 -0.0036

λ 9.5180 4.6003 -0.4819 9.9990 0.0039 -0.0009

350

a 9.9108 0.4269 -0.0892 10.00002 0.0009 0.0003

b 9.6659 4.4299 -0.3340 10.0035 0.0085 0.0035

λ 9.4743 4.7914 -0.5256 9.9982 0.0039 -0.0018

8 Applications for Real Data

This section illustrates the applicability and flexibility of the C-FE distribution with two
real data sets, which will represents as follow:

8.1 Data set (1): Minimum Monthly Flows of Water on The
Piracicaba River

Two real data sets are represented related to minimum monthly flows of water (m3/s)
during May and August on the Piracicaba River, located in São Paulo state, Brazil. The
data have been provided by Ramos et al. (2020) . The data is given by:

� May: 29.19, 18.47, 12.86, 151.11, 19.46, 19.46, 84.30, 19.30, 18.47, 34.12, 374.54,
19.72, 25.58, 45.74, 68.53, 36.04, 15.92, 21.89, 40.00, 44.10, 33.35, 35.49, 56.25,
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Table 2: CI, HPD interval, AILs and CPs (With a = 10, b = 10, λ = 10).

n Parameters
MLE Bayesian

CI AIL CP HPD Interval AIL CP

100

a (7.8659,11.7429) 3.8771 97.5 (9.9050,10.0773) 0.1722 96.7

b (3.0632,15.2997) 12.2365 97.5 (9.6995,10.2321) 0.5325 97.6

λ (1.8844,11.1123) 9.2279 97.5 (9.8282,10.1713) 0.3430 97.4

150

a (7.9771,11.4939) 3.5169 97.5 (9.9084,10.0805) 0.1721 97.9

b (2.7057,14.3136) 11.6079 97.5 (9.7044,10.2291) 0.5246 97.1

λ (1.8617,10.7465) 8.8848 97.5 (9.8481,10.1804) 0.3323 98.1

200

a (7.9635,11.2306) 3.2671 97.5 (9.9435, 10.0693) 0.1258 98.9

b (2.2788,13.2935) 11.0147 97.5 (9.8049,10.1699) 0.3650 96.4

λ (1.7734,10.6124) 8.8390 97.5 (9.8802,10.1351) 0.2549 98.3

250

a (7.7338,11.1738) 3.4399 97.5 (9.9554,10.0754) 0.1200 98.7

b (1.9327,12.9394) 11.0067 97.5 (9.8772,10.1776) 0.3005 97.5

λ (1.7604,10.5709) 8.8105 97.5 (9.8900,10.1336) 0.2436 98.2

300

a (7.6897,10.8714) 3.1816 97.5 (9.9609,10.0669) 0.1060 98.9

b (1.7522,12.5755) 10.8233 97.5 (9.9487,10.1693) 0.2206 97.8

λ (1.6993,10.4682) 8.7689 97.5 (9.9007,10.1254) 0.2257 98.1

350

a (7.5834,10.8223) 3.2389 97.5 (9.9515,10.0636) 0.1121 99.0

b (1.6319,12.2898) 10.6579 97.5 (9.9234,10.1743) 0.2509 97.9

λ (1.6234,10.3559) 8.7325 97.5 (9.9267,10.1109) 0.1846 98.0
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Table 3: Estimate Values and MSEs (With a = 8.5, b = 10, λ = 9.5).

n Parameters
MLE Bayesian

Parameters estimates MSE Bias Bayes MSE Bias

100

a 9.8789 2.9819 1.3789 8.5053 0.0019 0.0053

b 9.0033 10.2896 -0.9967 9.9225 0.0237 -0.0775

λ 8.5464 9.3405 -0.9536 9.5004 0.0079 0.0004

150

a 9.8299 2.6209 1.3299 8.5093 0.0019 0.0093

b 8.8898 8.4721 -1.1102 9.9073 0.0252 -0.0927

λ 8.6750 8.7508 -0.8249 9.4998 0.0076 -0.0002

200

a 9.8996 2.5517 1.3996 8.5002 0.0010 0.0002

b 9.0778 6.1271 -0.9222 10.0019 0.0094 0.0019

λ 8.8283 6.1922 -0.6717 9.4983 0.0039 -0.0017

250

a 9.8203 2.5193 1.3203 8.5016 0.0009 0.0016

b 8.8340 8.2288 -1.1659 10.0014 0.0095 0.0014

λ 8.5803 8.3164 -0.9197 9.4977 0.0039 -0.0023

300

a 9.7335 2.2051 1.2335 8.5004 0.0009 0.0001

b 8.5284 9.1257 -1.4716 10 9.0096 0.0009

λ 8.1313 11.3031 -1.3687 9.5029 0.0036 0.0029

350

a 9.7193 2.1737 1.2193 8.5025 0.0009 0.0025

b 8.4686 9.3154 -1.5313 9.9973 0.0089 -0.0027

λ 8.0989 11.7703 -1.4010 9.5007 0.0043 0.0007
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Table 4: CI, HPD interval, AILs and CPs (With a = 8.5, b = 10, λ = 9.5).

n Parameters
MLE Bayesian

CI AIL CP HPD Interval AIL CP

100

a (7.4431, 11.6892) 4.2461 97.5 (8.4191, 8.5890) 0.1699 97.7

b (1.9392, 14.3083) 12.3691 97.5 (9.6604, 10.1845) 0.5240 97.6

λ (1.6515, 11.9980) 10.3465 97.5 (9.3209, 9.6557) 0.3347 97.2

150

a (7.5589, 11.3575) 3.7985 97.5 (8.4249, 8.5884) 0.1635 97.8

b (1.9917, 12.9882) 10.9964 97.5 (9.6601, 10.1616) 0.5015 97.2

λ (1.6322, 12.4651) 10.8329 97.5 (9.3246, 9.6627) 0.3381 97.4

200

a (7.9302, 11.2356) 3.3054 97.5 (8.4341, 8.5586) 0.1244 97.0

b (2.1114, 12.6055) 10.4941 97.5 (9.8299, 10.2081) 0.3782 98.6

λ (1.6939, 11.6296) 9.9356 97.5 (9.3760, 9.6133) 0.2372 96.9

250

a (7.5255, 11.0986) 3.5731 97.5 (8.4439, 8.5659) 0.1220 98.1

b (1.8434, 12.1621) 10.3187 97.5 (9.8278, 10.2069) 0.3792 98.3

λ (1.6123, 11.1655) 9.5532 97.5 (9.3742, 9.6182) 0.2439 96.9

300

a (7.6347, 10.9165) 3.2818 97.5 (8.4391, 8.5635) 0.1244 98.0

b (1.8615, 11.8142) 9.9526 97.5 (9.8016, 10.0174) 0.3732 97.2

λ (1.6127, 11.0458) 9.4331 97.5 (9.3957, 9.6259) 0.2303 98.0

350

a (7.5348, 10.9013) 3.3665 97.5 (8.4412, 8.5639) 0.1227 98.1

b (1.7445, 11.5605) 9.8160 97.5 (9.8214, 10.1937) 0.3722 98.0

λ (1.5542, 11.2813) 9.7271 97.5 (9.3647, 9.6239) 0.2593 97.1
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Table 5: Estimate Values and MSEs (With a = 11, b = 12, λ = 10).

n Parameters
MLE Bayesian

Parameters estimates MSE Bias Bayes MSE Bias

100

a 11.9791 2.1747 9.1246 11.0016 0.0019 0.0016

b 10.0718 11.0059 1.9526 11.9273 0.0229 -0.0727

λ 9.5917 4.1726 1.8113 9.9985 0.0072 -0.0015

150

a 12.0203 1.9536 1.0203 10.9987 0.0010 -0.0013

b 10.0446 9.7777 -1.9554 12.0027 0.0091 0.0027

λ 9.6653 3.6611 -0.3347 10.0007 0.0036 0.0006

200

a 11.9769 1.6665 0.9769 10.9996 0.0011 -0.0004

b 9.8902 8.7887 -2.1098 11.9990 0.0092 -0.0009

λ 9.73425 3.0675 -0.2657 10.0011 0.0038 0.0011

250

a 1.5204 12.0164 1.0164 11.1001 0.0010 0.0007

b 6.8925 10.0280 -1.9719 12.0011 0.0091 0.0011

λ 1.9663 9.8119 -0.1880 9.9982 0.0041 -0.0017

300

a 11.9664 1.4267 0.9664 10.9987 0.0010 0.0013

b 9.9036 7.2334 -2.0964 11.9945 0.0091 -0.0055

λ 9.7793 2.0990 -0.2207 9.9985 0.0039 -0.0015

350

a 11.9776 1.4680 0.9776 10.9991 0.0010 -0.0009

b 9.9074 7.7049 -2.0926 12.0077 0.0099 0.0077

λ 9.7131 2.6663 -0.2869 9.9996 0.0040 -0.0004
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Table 6: CI, HPD interval, AILs and CPs (With a = 11, b = 12, λ = 10).

n Parameters
MLE Bayesian

CI AIL CP HPD Interval AIL CP

100

a (9.1246, 13.9673) 4.8426 97.5 (10.9179, 11.0839) 0.1660 97.4

b (1.9526, 14.8705) 12.9179 97.5 (11.6609, 12.1882) 0.5273 97.8

λ (1.8113, 11.6084) 9.7970 97.5 (9.8345, 10.1683) 0.3338 97.4

150

a (9.4558, 13.7115) 4.2557 97.5 (10.9307, 11.0554) 0.1247 96.8

b (1.9606, 14.3851) 12.4245 97.5 (11.8327, 12.2011) 0.3685 98.7

λ (1.8304, 11.7352) 9.9048 97.5 (9.8853, 10.0114) 0.0229 96.8

200

a (9.7569, 13.4485) 3.6915 97.5 (10.9331, 11.0583) 0.1251 96.8

b (2.3320, 13.0512) 10.7191 97.5 (11.8153, 12.1889) 0.3736 97.7

λ (1.9158, 11.9345) 10.0187 97.5 (9.8841, 10.1201) 0.2359 97.7

250

a (10.2618, 13.3555) 3.0937 97.5 (10.0941, 11.1066) 0.1223 98.3

b (3.2123, 12.7593) 9.5469 97.5 (11.8131, 12.1761) 0.3629 97.5

λ (2.1644, 10.4936) 8.3292 97.5 (9.8685, 10.1243) 0.2558 97.1

300

a (9.9565, 13.1054) 3.1489 97.5 (10.9384, 11.0627) 0.1243 97.7

b (3.1440, 12.3056) 9.1616 97.5 (11.8156, 12.1805) 0.3649 97.8

λ (2.1327, 10.5613) 8.4286 97.5 (9.8793, 10.1261) 0.2468 98.0

350

a (9.7578, 13.1574) 3.3997 97.5 (10.9401, 11.0664) 0.1263 97.8

b (2.5721, 12.3495) 9.7774 97.5 (11.8184, 12.1988) 0.3804 98.3

λ (1.9917, 10.6485) 8.6568 97.5 (9.8873, 10.1293) 0.2419 98.2
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24.29, 23.56, 50.85, 24.53, 13.74, 27.99, 59.27, 13.31, 41.63, 10.00, 33.62, 32.90,
27.55, 16.76, 47.00, 106.33, 21.03.

� August: 16.00, 9.52, 9.43, 53.72, 17.10, 8.52, 10.00, 15.23, 8.78, 28.97, 28.06, 18.26,
9.69, 51.43, 10.96, 13.74, 20.01, 10.00, 12.46, 10.40, 26.99, 7.72, 11.84, 18.39, 11.22,
13.10, 16.58, 12.46, 58.98, 7.11, 11.63, 8.24, 9.80, 15.51, 37.86, 30.20, 8.93, 14.29,
12.98, 12.01, 6.80.

The results obtained using the C-FE distribution are compared with the composed-
Weibull exponential (C-WE), Weibull (W) and Fréchet (Fr). We consider certain dis-
crimination criteria such as Kolmogorov-Smirnov (K-S) test statistic, Akaike Information
Criteria (AIC), Bayesian Information Criteria (BIC), and corrected Akaike information
criterion (CAIC). The preferred model is the one which provides the minimum values of
the aforementioned statistics. Summary statistics of the data are mentioned in Table 7.

Table 7: Summary statistics of minimum flow of water during May and August at Piraci-
caba River in Brazil

Month Min. 1st Qu. Median Mean 3rd Qu. Max.

May 10.00 19.46 28.59 44.96 44.51 374.54

Augus 6.80 9.80 12.46 17.44 18.26 58.98

Table 8: Estimates and Standard Errors for Different Distributions during May and Au-
gust at Piracicaba River in Brazil

Month Distributions
Estimates (standard errors)

â b̂ λ̂

May

C-FE 1.7994 (0.7587) 21.6957 (13.4717) 5.7000 (0.0001)

Fr 1.4807 (0.1357) 105.172 (42.6084)

C-WE 0.8962 (0.1294) 0.0422 (0.0271) 0.0369 (0.0177)

W 1.1036 (0.1136) 0.0142 (0.0074)

August

C-FE 2.3915 (0.9098) 24.943 (14.301) 5.7000 (0.0001)

Fr 1.9327 (0.1926) 113.1832 (51.1638)

C-WE 1.5670 (0.6447) 0.4712 (0.2839) 8.7000 (0.0000000105)

W 1.5763 (0.1717) 0.0091 (0.0054)

Parameter estimation of C-FE, Fr, W and C-WE model are tabulated in Table 8.
From Table 9, it will observe that C-FE distribution fits better than the chosen models.
These results are confirmed from the K-S, AIC, BIC, and CAIC values, since C-FE
distribution has the minimum values for the proposed data sets. Therefore, the proposed
methodology can be used successfully to analyze the minimum flow of water during May
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Table 9: Analytical results for different probability distributions for the data sets related
to the minimum flows of water during May and August at Piracicaba River in
Brazil.

Month Measures C-FE Fr C-WE W

May

K S(p-value) 0.0633 (0.9972) 0.0964 (0.8511) 0.13454 (0.4639) 0.1875 (0.1202)

-2log L 354.0966 357.4268 370.6919 383.5337

AIC 360.0966 361.4268 376.6919 387.5337

BIC 358.9028 360.6309 375.4981 386.7378

CAIC 361.9028 362.6309 378.4981 388.7378

August

K S(p-value) 0.0754 (0.9739) 0.1149 (0.6514) 0.1841 (0.1242) 0.1868 (0.1144)

-2log L 276.6462 280.4167 302.9114 302.9043

AIC 282.6462 284.4167 308.9114 306.9043

BIC 281.4845 283.6422 307.7497 306.1299

CAIC 384.4845

and August at Piracicaba River using the C-FE distribution. The plots of the fitted
C-FE, Fr, W and C-WE densities are shown in Figure 7 and 8.

Figure 7 illustrates the fitted pdfs of the C-FE, Fr, W and C-WE models for minimum
monthly flows of water (m3/s) during May.

Figure 8 illustrates the fitted pdfs of the C-FE, Fr, W and C-WE models for minimum
monthly flows of water (m3/s) during August on the Piracicaba River,

8.2 Active Repair Times for an Airborne Communication Transceiver

We provide data analysis to assess the goodness of fit of the C-FE model with respect
to the active repair times (hours) for an airborne communication transceiver to see how
C-EF distribution works in practice. The data is given by: 0.50,0.60,0.60, 0.70, 0.70,
0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20,
2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00,
10.20, 22.00, 24.5, and their source is Jorgensen (2012).

We fit a proposed model (C-FE) in comparison with six other well-known competing
distributions. The cumulative functions of the competing models are:

I. Exponential (Ex) distribution

F (x) = 1− e−λx, x, λ ≥ 0.

II. Exponentiated Fréchet (EFr) distribution introduced by da Silva et al. (2013).

F (x) = 1−
(
1− exp−(

b
x)

a)α
, x, α, a, b ≥ 0.
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Figure 7: illustrates the fitted pdfs of the C-FE, Fr, W and C-WE models for minimum
monthly flows of water (m3/s) during May on the Piracicaba River.

Figure 8: illustrates the fitted pdfs of the C-FE, Fr, W and C-WE models for minimum
monthly flows of water (m3/s) during August on the Piracicaba River.
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III. Exponentiated Generalized Fréchet (EGFr) distribution introduced by Abd-Elfattah
et al. (2016)

F (x) =
[
1−

(
1− exp−(

b
x)

a)α]β
, x, α, β, a, b ≥ 0 .

IV. Transmuted Exponentiated Fréchet (TEFr) distribution introduced by Elbatal
et al. (2014)

F (x) =

[
1−

(
1− e−(

b
x)

a)β]{
1 + α

[(
1− e−(

b
x)

a)]β}
, x, β, a, b ≥ 0, and |α| ≤ 1.

V. Topp Leone Fréchet (TLF) distribution introduced by Sapkota (2021)

F (x) =

[
1−

(
1− e−(

b
x)

a)2]α
, x, α, a, b ≥ 0.

VI. Alpha Power Transformed Fréchet (APTF) distribution introduced by Elbatal
et al. (2018)

F (x) =
e−(

b
x)

a

αe
−( b

x)
a

α
, x, α, a, b ≥ 0 and α ̸= 1.

The analytical measure such as Kolmogorov-Smirnov (KS) test statistic, Akaike In-
formation Criterion (AIC), Bayesian Information Criterion (BIC), and corrected Akaike
information criterion (CAIC) are considered for deciding the goodness of the fit results
of the proposed model and other competing models. On considering these measures, it
is shown that the newly proposed model provides greater distributional flexibility than
the other well-known distributions. Summary statistics of the data are mentioned in
Table 10.

Table 10: Summary statistics of active repair times (hours).

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.500 1.000 2.100 4.013 4.775 24.500

In Table 12, we compare the C-FE model with the Exponential (Ex), Exponentiated
Fréchet (EFr), Exponentiated Generalized Fréchet (EGFr), Transmuted Exponentiated
Fréchet (TEFr), the Topp Leone Fréchet (TLF),and Alpha power Transformed Fréchet
(APTF) distributions. It is noted that the C-FE distribution has the lowest values for
the AIC, BIC and CAIC statistics among all fitted models. So, the C-FE model can be
chosen as the best model among all fitted models for this data.
Figure 9 illustrates the fitted pdfs of the C-FE, Ex, EFr, EGFr, TEFr, APTF and

TLF models for active repair times (hours) data.



524 Muhammed, ElSherpiney, Ibrahim

Table 11: Estimates of the parameters and standard errors (in parentheses) for the mod-
els fitted to active repair times (hours).

Model
Estimates (standard errors)

â b̂ λ̂ α̂ β̂

C-FE 1.135 (0.172) 1.442 (0.289) 3.374 (2.187) - -

Ex - - 0.249 (0.039) - -

EFr 1.241 (0.972) 1.405 (1.313) - 0.956 (1.218) -

EGFr 6.591 (7.319) 0.387 (0.198) - 0.156 (0.185) 3.085 (3.041)

TEFr 3.309 (21.947) 0.648 (1.767) - -0.535 (2.622) 0.289 (2.103)

TLF 0.665 (0.158) 0.215 (0.926) - 16.584 (76.313) -

APTF 1.256 (0.211) 1.321 (0.448) - 1.246 (0.954) -

Table 12: Analytical results of C-FE and other competing model Data

The model
Measures

K S (p-value) -2log L AIC BIC CAIC

C-FE 0.091 (0.892) 177.819 183.819 188.886 184.486

Ex 0.138 (0.430) 191.153 193.153 194.842 193.258

EFr 0.096 (0.857) 178.897 184.897 189.964 185.564

EGFr 0.095 (0.865) 177.949 185.949 192.704 186.792

TEFr 0.099 (0.831) 178.638 186.638 193.393 187.881

TLF 0.096 (0.856) 179.057 185.057 190.124 185.724

APTF 0.865 (0.095) 178.806 184.806 189.873 185.473
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Figure 9: The fitted pdfs of the C-FE, Ex, EFr, EGFr, TEFr, APTF and TLF models
for active repair times (hours) data.

9 Conclusions

We introduced a new generator based on the star-shaped property. The new class is
named as the composed –G Q class. To examine the performance of the new generator
and to contribute to the extreme value distributions, the new family depends on Fréchet
distribution, this family called composed- Fréchet Q family. A sub-model of the new
family called the composed- Fréchet exponential (C-FE) distribution is presented to
provide the flexibality of the family. The statistical properties were discussed. The
parameters of C-FE distribution are estimated by using the maximum likelihood and
Bayesian methods. A simulation study was conducted to compare the performances of
Bayes estimators with corresponding maximum likelihood estimators. We use two real
sets of data to prove empirically the importance and flexibility of the new model and
comparing it with other models. In conclusion the Bayesian method is the best method
to obtain estimates for this new family of distributions and the new generator provides
the best fit to all of the data.

Future Work

The present work can be extended

1. Estimation parameters of the composed-Fréchet exponential distribution by using
different methods of estimation.

2. Estimation of C-FE distribution under different censoring samples can be per-
formed.



526 Muhammed, ElSherpiney, Ibrahim

3. Generating many distributions by using Composed-Fréchet Generated Family.

Appendix

Proof 1

Moments

Start with

E (Xr) =

∫ ∞

0
xrf(x) dx

and substitute for f(x) from Eq.(8) sets,

E (Xr) =
∫∞
0 xrab

(
x(1− e−λx)

)−a−1
e−b(x(1−e−λx))

−a

.{x.λe−λx + 1− e−λx}dx

Since,

e−b(x(1−e−λx))
−a

=
∑∞

i=0
(−1)i

i!

[
b
(
x(1− e−λx)

)−a
]i
.

Then,

E (Xr) =
∑∞

i=0
(−1)i

i! abi+1
∫∞
0 xr−a(i+1)−1

(
(1− e−λxi)

)−a(i+1)−1
.{x.λe−λxi + 1 −

e−λxi}dx

and since,

(
1− e−λxi

)−a(i+1)−1
=
∑∞

k=0 (−1)k
(
−a(i+ 1)− 1

k

)
e−kλx .

Then,

E (Xr) =
∞∑

i=k=0

(−1)i+kabi+1

∫ ∞

0
xr−a(i+1)−1

(
−a(i+ 1)− 1

k

)
e−kλx·

·{x.λe−λxi + 1− e−λxi}dx

After some simple Algebric steps, we get the result in Eq. (12).

Proof 2

Order Statistics

fi;n(x) =
n!

(i− 1)!(n− i)!
(F (x))i−1 (1− F (x))n−i f(x)

Where x = x(i)for simplicity
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fi;n(x) =
n!

(i− 1)!(n− i)!

(
e−b(x(1−e−λx))

−a)i−1 (
1− e−b(x(1−e−λx))

−a)n−i

ab
(
x(1− e−λx)

)−a−1
e−b(x(1−e−λx))

−a

.{x.λe−λx + 1− e−λx}
Since,(
1− e−b(x(1−e−λx))

−a)n−i

=
∑∞

j=0 (−1)j
(
n− i

j

)
e−jb(x(1−e−λx))

−a

.

Then,

fi;n(x) =
n!

(i− 1)!(n− i)!

∞∑
j=0

(−1)j
(
n− i

j

)
ab
(
x(1− e−λx)

)−a−1
·

·e−(i+j)b(x(1−e−λx))
−a

{x.λe−λx + 1− e−λx}

and since,

e−(i+j)b(x(1−e−λx))
−a

=
∑∞

r=0
(−1)r

r!

[
(i+ j)b

(
x(1− e−λx)

)−a
]r
.

Then,

fi;n(x) =
n!

(i− 1)!(n− i)!

∞∑
r=0

∞∑
j=0

(−1)j+r

r!

(
n− i

j

)
(i+ j)rabr+1

(
x(1− e−λx)

)−ar
·

·
(
x(1− e−λx)

)−a−1
.

.{x.λe−λx + 1− e−λx}.
After some simple Algebric steps, we get the result in Eq. (14).
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