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In this pedagogical paper we provide an illustration of Fisher informa-
tion through examples based on the dichotomization and discretization of
continuous variables following a Gaussian distribution. In these examples,
we demonstrate the information loss and quantify the increase in sample size
necessary to recover this loss. To facilitate understanding and application, we
also provide R codes for performing illustrative simulations. This approach
aims to improve the teaching and learning experience of Fisher information
in statistical education.
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1 Introduction

In mathematical statistics, information is a crucial concept that dates back to Sir Ronald
Aylmer Fisher (1890-1962), who discussed it in several works; see Fisher (1922) and
Fisher (1925) for early papers. Sir Francis Ysidro Edgeworth (1845-1926) was the first
to introduce the concept of information; see Edgeworth (1908) and the review provided

*Corresponding author: fulvia.pennoni@unimib.it
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in Savage (1976). The Fisher information is illustrated in most statistical textbooks, such
as Cox and Hinkley (1979), Lehmann and Casella (1998), and Casella and Berger (2002);
just to mention a recent overview, see Ly et al. (2017). A gentle video tutorial is provided
at https://www.youtube.com/watch?v=pneluWj-U-o. As stated in Frieden (2004, p.
23): “Fisher information is a simple and intuitive concept. [...] once understood, the
concept gives strong payoff - one might call it “phenomen-all”- in scope of application.
It’s simply worth learning.”.

With reference to a single random variable following a parametric model X ∼ fθ(x)
that depends on a single parameter θ, the Fisher information is defined as

Ī(θ) = Eθ

[(
∂

∂θ
log f(X|θ)

)2]
= −Eθ

[(
∂2

∂θ2
log f(X|θ)

)]
,

where usual regularity conditions are assumed. Referred to a sample of n independent
observations from the assumed model, the overall Fisher’s information simply becomes
I(θ) = nĪ(θ). These definitions may be extended to the multiparametric case in a natural
way, obtaining average and overall information matrices.

In teaching Fisher information, a typical question from students is why this name has
been historically adopted. Generally, the answer that Ī(θ) is a measure of the amount
of information on θ provided by a single observation and I(θ) is that provided by a
sample of size n, without specific motivations, is considered unsatisfactory. Classic ex-
amples related to the estimation of the mean under the Gaussian (with known variance),
Bernoulli, and Poisson models illustrate this point. As is well known, for these models
we have the following results:

X ∼ N(µ, σ2) : Ī(µ) = 1/σ2, (1)

X ∼ Bern(p) : Ī(p) = 1/[p(1− p)], (2)

X ∼ Pois(λ) : Ī(λ) = 1/λ. (3)

In these examples, the Fisher information is equal to the reciprocal of the population
variance. Therefore, when the variance is equal under all three models, there is the
same information on the population mean. This seems to contradict the general belief
that binary or count data have a smaller information content than continuous data; see,
among others, Gertsbakh (1995) and Royston et al. (2006).

A related definition is that of the Cramér-Rao inequality, first introduced in Fréchet
(1943) and extended by Rao (1945) and Cramér (1946); see Savage (1972) for historical
details. According to this inequality, for an unbiased estimator the lower bound of the
variance (and then of its mean squared error) is 1/I(θ). The larger is I(θ), the smaller
is the lower bound of variance of the estimator, and so the greater its precision when
the variance touches this lower bound. Therefore, I(θ) is a measure of efficiency of
the estimation procedure. Moreover, 1/Ī(θ) is the asymptotic variance of

√
n(θ̂ − θ),

where θ̂ is the maximum likelihood estimator (MLE) of θ, so that its variance may be
approximated with 1/I(θ). The Cramér-Rao inequality can be adopted as a paradigm
to explain the Fisher information, although for the three examples in (1), (2), and (3),
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we obtain the same lower bound for the same sample size and population variance; this
lower bound is reached by the sample mean in all these examples.
To provide adequate explanations in teaching Fisher information, while retaining sim-

plicity, in this note we propose two examples based on the comparison between the
information contained in continuous data that are directly observable and that con-
tained in the corresponding dichotomized or discretized data. Note that comparisons
between these two situations are already available in the literature even in more sophis-
ticated contexts; see, for instance, Shentu and Xie (2010). However, our focus here is
purely on information rather than on other aspects and on presenting results from a
teaching perspective. In this regard, we also provide in the appendix some R codes (R
Core Team, 2023) to perform illustrative simulations. For related studies from a different
perspective, we refer the reader to works such as Park (1996), where a plot is suggested
to visually represent the Fisher information for any set of consecutive order statistics
in a parametric distribution; see also Tsairidis et al. (2001), Park and Balakrishnan
(2009) and Park et al. (2011), where the properties of Fisher information are explored
under various no censoring conditions: quantal, complete, incomplete, and hybrid cen-
soring schemes; finally, see Barakat et al. (2021) and Husseiny et al. (2022), where other
features of the Fisher information concerning order statistics are explored.
The remainder of this note is organized as follows. In Section 2 we deal with the case

of dichotomizing a continuous variable so as to obtain a binary variable. The case of
discretizing a continuous variable in an arbitrary number of categories is dealt with in
Section 3. Section 4 provides some final conclusions, while the illustrative R codes are
reported in Appendix.

2 Observing continuous versus dichotomized data

For a Gaussian model with known variance, X ∼ N(µ, σ2), the Fisher information on
µ is ĪX(µ) = 1/σ2, as noted previously. Under this model, the MLE of µ, which is the
sample mean µ̂1 = X̄, has variance V1(µ̂1) = σ2/n. The asymptotic (in this case, also
finite-sample) variance of

√
n(µ̂1 − µ) is V̄1(µ̂1) = σ2.

Now consider a dichotomized version of X resulting in Y = 1(X > τ), where τ is
a known cutpoint and 1(·) denotes the indicator function. Obviously, Y has Bernoulli
distribution, in symbols Y ∼ Bern(p), with success probability

p = 1− Φ

(
τ − µ

σ

)
,

where Φ(·) is the cumulative distribution function of the standard Gaussian distribution,
which can also be expressed as

p = Φ(δ), δ =
µ− τ

σ
.

Note that
∂p

∂µ
=

ϕ(δ)

σ
,
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where ϕ(·) is the density function of the standard Gaussian distribution, and

∂2p

∂µ2
= −ϕ(δ)δ

σ2
.

The log-likelihood function for Y is given by

log fµ(y) = y log(p) + (1− y) log(1− p),

and the score function (for a single observation) is

∂ log fµ(y)

∂µ
=

(
y

p
− 1− y

1− p

)
∂p

∂µ
, (4)

and
∂2 log fµ(y)

∂µ2
= −

(
y

p2
+

1− y

(1− p)2

)(
∂p

∂µ

)2

+

(
y

p
− 1− y

1− p

)
∂2p

∂µ2
,

so that

ĪY (µ) =
1

p(1− p)

(
∂p

∂µ

)2

=
ϕ2(δ)

σ2p(1− p)
.

Also note that, from (4), the MLE of µ based on a sample of binary observations drawn
from the model for Y is obtained by solving the equation

Ȳ − Φ

(
µ− τ

σ

)
= 0,

leading to the solution
µ̂2 = τ + σΦ−1(Ȳ ), (5)

where Ȳ is the sample mean. The asymptotic variance of
√
n(µ̂2 − µ) is

V̄ (µ̂2) =
σ2p(1− p)

Φ2(δ)
.

We can now compare the information on µ based on two samples, one drawn from the
distribution of X and the other from the distribution of Y . In particular, we consider
the following ratio between the average Fisher information functions:

ĪY (µ)

ĪX(µ)
=

ϕ2(δ)

p(1− p)
= R(δ).

Note that R(δ) is also equal to the ratio between the asymptotic variances V̄ (µ̂1) and
V̄ (µ̂2).
Function R(δ), which is symmetric, is represented in Figure 1, while values of this

function for certain values of δ are reported in Table 1. These results can be obtained
by the R code reported in Appendix A1, where we also demonstrate an illustrative
simulation. It is worth noting that R(δ) is always smaller than 1, and its maximum value
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Figure 1: Representation of R(δ) with respect to δ.

is reached for δ = 0, when it is equal to R(0) = 2/π ≈ 0.637; therefore, this maximum
value is attained when µ = τ regardless of σ2. Moreover, the loss of information increases
as δ deviates from 0; that is, as the distance between µ and τ increases (with σ2 constant)
or as σ2 decreases (with µ−τ constant). Table 1 also presents values of 100/R(δ), where
this ratio can be interpreted as the sample size of dichotomized variables having the
same information content as a sample of size 100 of continuous outcomes.

3 Observing continuous versus discretized data

The example proposed in the previous section can be extended to the case of continuous
data that are discretized into a finite number k of categories, labelled from 0 to k − 1.
This approach is commonly adopted in the analysis of ordinal data; see, among others,
McCullagh (1980) and Agresti (2013, Ch. 8). This discretization is based on the ordered
cutpoints τ1 < · · · < τk−1 such that

Y = y if τy ≤ x < τy+1, y = 0, . . . , k − 1,

where τ0 = −∞ and τk = +∞ for completeness.
We also introduce the indicator variables Zy = 1(Y = y) and the random vector

Z = (Z0, . . . , Zk−1)
′, which is equivalent to Y . Under the assumption of a Gaussian
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δ R(δ) 100/R(δ)

-5.00 0.00000771 12968690.3

-2.50 0.04978708 2008.6

-1.00 0.43862886 228.0

-0.50 0.58099165 172.1

-0.25 0.62230110 160.7

-0.10 0.63431001 157.7

0.00 0.63661977 157.1

0.10 0.63431001 157.7

0.25 0.62230110 160.7

1.00 0.43862886 228.0

2.50 0.04978708 2008.6

5.00 0.00000771 12968690.3

Table 1: Values of R(δ) and 100/R(δ) for certain typical values of δ.

distribution for X, as formulated at the beginning of Section 2, Z follows a generalized
Bernoulli distribution with probability mass function

fµ(z) =
k−1∏
y=0

p
zy
y ,

where zy is a realization of Zy and these realizations are collected in z, and

py =


1− Φ(δ1) if y = 0,

Φ(δy)− Φ(δy+1) if y = 1, . . . , k − 2,

Φ(δk−1) if y = k − 1,

with δy = (µ− τy)/σ; consequently we have

∂py
∂µ

=
1

σ


−ϕ(δ1) if y = 0,

ϕ(δy)− ϕ(δy+1) if y = 1, . . . , k − 2,

ϕ(δk−1) if y = k − 1,

and

∂2py
∂µ2

= − 1

σ2


−ϕ(δ1)δ1 if y = 0,

ϕ(δy)δy − ϕ(δy+1)δy+1 if y = 1, . . . , k − 2,

ϕ(δk−1)δk−1 if y = k − 1.

Now note that

log fµ(z) =
k−1∑
y=0

zy log py,
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so that

∂ log fµ(z)

∂µ
=

k−1∑
y=0

zy
py

∂py
∂µ

,

and

∂2 log fµ(z)

∂µ2
=

k−1∑
y=0

[
zy
py

∂2py
∂µ2

− zy
p2y

(
∂py
∂µ

)2
]
,

leading to the Fisher information

ĪZ(µ) =
k−1∑
y=0

1

py

(
∂py
∂µ

)2

=
1

σ2

ϕ2(δ1)

p0
+

k−2∑
y=1

[ϕ(δy)− Φ(δy+1)]
2

py
+

ϕ2(δk−1)

pk−1

 .

In this case, for the MLE of µ denoted by µ̂3, there is not an explicit formula as that
in (5), but an iterative algorithm, such as the Newton-Raphson algorithm, is required.
As an illustrative example, this algorithm is implemented in the R function provided in
Appendix A2.
In order to demonstrate the loss of information due to the discretization, which is now

quantified by the ratio

R(δ) =
ĪZ(µ)

ĪX(µ)
=

ϕ2(δ1)

p0
+

k−2∑
y=1

[ϕ(δy)− ϕ(δy+1)]
2

py
+

ϕ2(δk−1)

pk−1
,

we consider three different scenarios with k categories equal to 3, 5, and 10, and cutpoints
τj = α+ βξj , where ξj = 2(j − 1)/(k− 2)− 1, j = 1, . . . , k− 1. These points are equally
spaced between −1 and 1, while µ = 0 and σ2 = 1 in all cases. Results for different
values of α and β are reported in Table 2.

Appendix A3 presents the R code that can be used to perform an illustrative simulation
for computing R(δ).

4 Conclusion

The Fisher information is a foundational concept in statistical inference across various
disciplines. By quantifying the amount of information provided by data about model
parameters, the Fisher information enhances our understanding of the reliability and
efficiency of statistical estimators. For example, in vaccine trials, this concept aids in
evaluating in which measure a sample of a certain size can provide reliable estimates
of vaccine effectiveness. In radar signal processing, understanding Fisher information is
crucial for accurately estimating parameters such as target location and velocity from
noisy measurements. In psychometrics and education, it helps in understanding how
effectively a test discriminates between different levels of ability and how sample size
affects the precision of ability estimates.
Dichotomization of continuous variables is prevalent in clinical studies and other fields.

For instance, in drug discovery, chemical potencies are often dichotomized during data
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k α β R(δ) 100/R(δ)

3 0 1 0.73807618 135.5

3 0 2 0.25626440 390.2

3 1 1 0.69576936 143.7

3 1 2 0.45076098 221.8

3 5 1 0.00056554 176823.5

3 5 2 0.01456986 6863.5

5 0 1 0.91205868 109.6

5 0 2 0.86971179 115.0

5 1 1 0.79858440 125.2

5 1 2 0.85707561 116.7

5 5 1 0.00056621 176612.9

5 5 2 0.01458162 6857.9

10 0 1 0.93327913 107.1

10 0 2 0.97526729 102.5

10 1 1 0.81323549 123.0

10 1 2 0.95110931 105.1

10 5 1 0.00056685 176412.2

10 5 2 0.01464070 6830.3

Table 2: Values of R(δ) and 100/R(δ) for certain values of δ; these values do not depend
on the sign of α.

analysis. In medical research, clinical measurements like blood pressure have conven-
tional thresholds used for diagnoses. In social sciences and psychology, categorized out-
comes are common, with binary response variables frequently modeled using logistic and
probit regression models. The conclusions drawn from the previous examples align with
the general principle that discretized data contain less information than the original
continuous data. When continuous variables are dichotomized, as illustrated in Section
2, the most favorable scenario occurs when δ = 0, where δ measures the relative dis-
tance (in terms of standard deviation) between the population mean and the cutpoint.
According to the results in Table 1, in this case, the amount of information in a sample
of continuous data of size n is comparable to that contained in a sample of dichotomized
data of size 1.571n. However, when δ ̸= 0 the loss of information could be much more
severe. For instance, the size of the dichotomized sample would need to increase to 2.28n
for |δ| = 1 and to 20.09n for |δ| = 2.5.

However, when continuous variables are discretized in k categories, several factors
must be considered. From the results in Table 2, the primary conclusion is that the
severity of the information loss tends to decrease as k increases, assuming other factors
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remain constant. For instance, with α = 0 and β = 2, the sample size required for
discretized variables is 3.90n with three categories and 1.03n with ten categories. Here,
α and β define the sequence of cutpoints. This is reasonable because a finer discretization
corresponds to more informative categories. However, even with many categories, such
as ten, the necessary increase in sample size to compensate for discretization could be
substantial. This occurs, for example, when µ lies outside the range of the cutpoints
τ1, . . . , τk−1, as observed when α = 5 and β = 1.
Finally note that the examples proposed in Sections 2 and 3 may be extended to

regression models that include covariates. In these models, instead of observing a con-
tinuous response variable, we may observe its dichotomized or discretized versions. This
comparison can involve linear regression models against probit or ordinal probit models.
For further insights, we refer the reader to Winship and Mare (1984). Furthermore, it
has been demonstrated that analysing rather than the available continuous variable its
discretized version may offer certain advantages, such as enhancing robustness against
specific types of data contamination. For detailed discussions, see Shentu and Xie (2010).

Appendix

A1. R code for the case of dichotomized variables: Simulations

The following R code can be used to compute simulated and theoretical values of function
R(δ), which represent the ratio between the average Fisher information functions when
continuous variables are dichotomized, as outlined in Section 2.

� Simulation setup: Theoretical values

mu = 1; si2 = 4

tau = -0.5

n = 1000

� Perform simulations

si = sqrt(si2)

mu1v = mu2v = rep(0,10000)

for(it in 1:10000){

xv = rnorm(n,mu,si)

yv = 1*(xv>tau)

mu1 = mean(xv)

mu2 = tau+si*qnorm(mean(yv))

mu1v[it] = mu1; mu2v[it] = mu2

}

� Print output
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– Simulated value of R(δ)

print(var(mu1v)/var(mu2v))

#> [1] 0.525802

– Theoretical value of R(δ)

de = (mu-tau)/si

print(dnorm(de)^2/(pnorm(de)*(1-pnorm(de))))

#> [1] 0.5174023

A2. R code for the case of discretized variables: Maximum likelihood
estimation of µ

In the following we show the code of the functions used to obtain the MLE of µ as
described Section 3 based on the Newton-Raphson algorithm. We also report some
results when running these functions.

� Main function named nr mu.R

nr_mu = function(yv,tauv,si2){

# preliminaries

n = length(yv)

k = max(yv)+1

si = sqrt(si2)

# compute probabilities and their derivatives

dev = (mu-tauv)/si

pv = 1 - pnorm(dev[1])

for(y in 1:(k-2)) pv = c(pv,pnorm(dev[y])-pnorm(dev[y+1]))

pv = c(pv,pnorm(dev[k-1]))

d1v = -dnorm(dev[1])/si

for(y in 1:(k-2)) d1v = c(d1v,dnorm(dev[y])/si-dnorm(dev[y+1])/si)

d1v = c(d1v,dnorm(dev[k-1])/si)

d2v = dnorm(dev[1])*dev[1]/si2

for(y in 1:(k-2)) d2v = c(d2v,-(dnorm(dev[y])*dev[y]/si2-

dnorm(dev[y+1])*dev[y+1]/si2))

d2v = c(d2v, - dnorm(dev[k-1])*dev[k-1]/si2)

# log-likelihood, score and observed information

lk = sc = J = 0

for(i in 1:n){

lk = lk+log(pv[yv[i]+1])
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sc = sc+d1v[yv[i]+1]/pv[yv[i]+1]

J = J-(d2v[yv[i]+1]/pv[yv[i]+1]-d1v[yv[i]+1]^2/pv[yv[i]+1]^2)

}

# iterate until convergence

# print(c(0,mu,lk))

lko = lk; it = 0

while((lk-lko)/abs(lko)>10^-10 | it==0){

lko = lk; it = it+1

# update parameter

mu = mu+sc/J

# compute probabilities and their derivatives

dev = (mu-tauv)/si

pv = 1 - pnorm(dev[1])

for(y in 1:(k-2)) pv = c(pv,pnorm(dev[y])-pnorm(dev[y+1]))

pv = c(pv,pnorm(dev[k-1]))

d1v = - dnorm(dev[1])/si

for(y in 1:(k-2)) d1v = c(d1v,dnorm(dev[y])/si-dnorm(dev[y+1])/si)

d1v = c(d1v,dnorm(dev[k-1])/si)

d2v = dnorm(dev[1])*dev[1]/si2

for(y in 1:(k-2)) d2v = c(d2v,-(dnorm(dev[y])*dev[y]/si2-

dnorm(dev[y+1])*dev[y+1]/si2))

d2v = c(d2v,-dnorm(dev[k-1])*dev[k-1]/si2)

# log-likelihood, score and observed information

lk = sc = J = 0

for(i in 1:n){

lk = lk+log(pv[yv[i]+1])

sc = sc+d1v[yv[i]+1]/pv[yv[i]+1]

J = J-(d2v[yv[i]+1]/pv[yv[i]+1]-d1v[yv[i]+1]^2/pv[yv[i]+1]^2)

}

# print output

# print(c(it,mu,lk,lk-lko))

}

# output

out = list(mu=mu,lk=lk,sc=sc,J=J,pv=pv)

}

A3. R code for the case of discretized variables: Simulations

In the following we show the code to perform the simulation described in Section 3.

� Simulation setup
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k = 3

mu = 0; si2 = 1

al = 0; be = 1

n = 1000

� Compute cutpoints

si = sqrt(si2)

si = sqrt(si2)

xiv = 2*((1:(k-1))-1)/(k-2)-1

tauv = al+be*xiv

� Perform simulations

si = sqrt(si2)

mu1v = mu3v = rep(0,1000)

for(it in 1:1000){

xv = rnorm(n,mu,si)

yv = rep(0,n)

for(y in 1:(k-1)) yv = yv+(xv>tauv[y])

out = nr_mu(yv,tauv,si2)

mu1v[it] = mean(xv)

mu3v[it] = out$mu

}

� Print output

– Simulated value of R(δ)

print(var(mu1v)/var(mu3v))

#> [1] 0.7788731

– Theoretical value of R(δ)

dev = (mu-tauv)/si

pv = 1-pnorm(dev[1])

for(y in 1:(k-2)) pv = c(pv,pnorm(dev[y])-pnorm(dev[y+1]))

pv = c(pv,pnorm(dev[k-1]))

R = dnorm(dev[1])^2/pv[1]

for(y in 1:(k-2)) R = R+(dnorm(dev[y])-dnorm(dev[y+1]))^2/pv[y+1]

R = R+dnorm(dev[k-1])^2/pv[k]

print(R)

#> [1] 0.7380762
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