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The strategy of E-Bayesian estimation for traffic intensity in a queueing
M/M/1 system is developed under different loss functions. The Bayesian
and E-Bayesian estimators are derived using a power prior density of traffic
intensity and a robust prior for the hyperparameter of the prior distribu-
tion. The posterior risk of Bayesian estimators and the associated expected
posterior risks of traffic intensity are computed for comparison purposes. A
Monte Carlo simulation is conducted for performace analysis of the proposed
E-Bayesian estimators using expected posterior criteria.
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1 Introduction

Queueing systems are widely used in various fields such as stochastic processes, opera-
tions research, and statistical analysis due to their inherent ability to model and analyze
complex queues that occur naturally in a variety of scenarios. These scenarios can range
from the study of traffic flow in transportation networks to the analysis of customer
service in call centers. The versatility of queueing systems stems from their ability to
capture the dynamic behavior of queues, including arrival rates, service times, and queue
capacities, which allows for the examination of various performance measures such as
waiting times, queue lengths, and system utilization. Moreover, the study of queueing
systems has been instrumental in addressing real-world problems and optimizing system
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performance by providing insights into resource allocation, capacity planning, and ser-
vice level agreements. By understanding the fundamental principles and mathematical
models underlying queueing systems, researchers and practitioners can make informed
decisions and design efficient systems that meet the demands of today’s complex and
dynamic environments. Therefore, queueing systems play a crucial role in the field
of stochastic processes, operations research, and statistical analysis, offering invaluable
tools for analyzing and optimizing the performance of various complex queues.
Several categories of queues have been identified, and a standardized notation has been

developed to represent them, mostly attributed to Kendall (1953), utilizing a sequence of
symbols and slashes like A/B/X, where A is the symbol denoting the interarrival-time
distribution (for instance, M is utilized to represent exponential or Markovian distri-
bution), B represents the service pattern (e.g., D is used for deterministic or constant
service times, M for Markovian, Er for Erlang with r phases and G for general) and
X denotes the number of parallel service servers. In classical methods of estimation,
Srinivas and Kale (2016) derived the maximum likelihood estimator (MLE ) and uni-
formly minimum variance unbiased estimator (UMVUE ) of traffic intensity in a M/D/1
queueing model. Yadavalli et al. (2017) computed UMVUE for the expected length in a
M/Er/1 system. Bayesian methods up to select prior density and loss function. Chowd-
hury and Maiti (2014) assumed the Bayesian estimation of traffic intensity in this model
under the squared error loss (SEL) and precautionary loss (PL) functions. The classical
and Bayesian estimation in the M/D/1 queueing system is considered by Chandrasekhar
et al. (2021). Moreover, Yu et al. (2023) studied UMVUEs and Bayesian estimators for
various performance measures on a Poisson queue with discouraged arrivals.
The system M/M/1 which represents a single-server queue with Poisson arrival rate

µ > 0 and exponential service rate λ > 0, is the simplest and one of the most applicable
queueing models in numerous practical applications. Clarke (1957) computed the MLE
of the arrival rate and service time. Srinivas et al. (2011) considered MLE and UMVUE
for some measures of this queue system. Armero and Bayarri (1994) have comupted the
Bayesian estimator of the traffic intensity. Sharma and Kumar (1999) and Mukherjee
and Chowdhury (2005) considered the Bayesian estimation of the traffic intensity un-
der the SEL function and linear-exponential (LINEX ) loss function, respectively. Dey
(2008) discussed the Bayesian estimation of several characteristics under the SEL func-
tion. Ren and Wang (2012) used a PL function for finding the Bayesian estimator of
the traffic intensity. Shrinkage estimation of the expected length is developed by Ki-
apour and Naghizadeh Qomi (2019). Quinino and Cruz (2017) studied the problem of
Bayesian sample size determination. Singh and Acharya (2019) founded the bound for
the equivalence of Bayesian and MLE for the arrival process.
A problem concerning to Bayesian estimation is that a single prior distribution can

not reflect personal believes about the parameter of interest. Recently, Kiapour (2022)
used a new method called E-Bayesian (expected Bayesian) estimation for estimation in
a M/M/1 queueing model. In this method, the researcher considers a class of prior
distributions reflecting prior knowledge instead of single prior about model parameters
of interest.
In this paper, we obtain the E-Bayesian estimators of traffic intensity in a M/M/1
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queue system and comapre them using corresponding expected posterior risks under
four loss functions. To do this, the paper is arranged as follows: Section 2 is devoted to
Bayesian estimation of traffic intensity. The E-Bayesian estimators of traffic intensity
are calculated in Section 3. Expected posterior risks of proposed estimators are given
in Section 4. A Monte Carlo simulation study is conducted in Section 5 for evaluation
proposed E-Bayesian estimators. Conclusions and discussions is offered in Section 6.

2 Bayesian estimation of traffic intensity

Assume that the random variable Y represents the number of customers in a M/M/1
system has the geometric distribution with parameter 1−ϱ (Ge(1−ϱ)), where ϱ = λ

µ < 1,
represents the traffic intensity. The probability mass function (p.m.f) is given as

P (Y = y|ϱ) = (1− ϱ)ϱy, 0 < ϱ < 1, y = 0, 1, 2, .... (1)

Throughout the paper, let y = (y1, ..., yn) be the sample observations from a geometric
distribution with p.m.f. (1). Then, the likelihood function of ϱ based on observed data
is given by

L(ϱ) = (1− ϱ)nϱs, (2)

where s =
∑n

i=1 yi. Therefore, the MLE of ϱ is obtained as ϱ̂ml =
s

n+s .

Now, Consider a power distribution as prior distribution for ϱ with probability density
function (pdf)

πa(ϱ) = aϱa−1, 0 < ϱ < 1, a > 0. (3)

Posterior pdf of ϱ given y is given by

πa(ϱ | y) =
πa(ϱ)L(ϱ)∫ 1

0 πa(ϱ)L(ϱ)dϱ
=

aϱa−1(1− ϱ)nϱs∫ 1
0 aϱa−1(1− ϱ)nϱsdϱ

=
ϱs+a−1(1− ϱ)n

B(s+ a, n+ 1)
, (4)

where B(u, v) =
∫ 1
0 xu−1(1− x)v−1dx denotes the beta function.

For computing the Bayesian estimation of ϱ, we consider four loss functions:

1. Squared error loss (SEL) function: L1(ϱ, ϱ̂) = (ϱ̂− ϱ)2,

2. Weighted squared error loss (WSEL) function: L2(ϱ, ϱ̂) = (ϱ̂− ϱ)2/ϱ,

3. Precautionary loss (PL) function: L3(ϱ, ϱ̂) = (ϱ̂− ϱ)2/ϱ̂,

4. K-loss (KL) function: L4(ϱ, ϱ̂) = ϱ̂/ϱ+ ϱ/ϱ̂− 2.
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The following Lemma due to Han (2020) provides the Bayesian estimation of ϱ and
its posterior risk under loss functions Li(ϱ, ϱ̂), i = 1, 2, 3, 4.

Lemma 1. Let πa(ϱ) and πa(ϱ|y) be the prior and posterior densities of ϱ, respectively.

Then, we have the following results:
(i) Under SEL function, the Bayesian estimation of ϱ is

ϱ̂B1(y) = E(ϱ|y),

and the corresponding expected posterior risk is as

PR1(ϱ̂) = V ar(ϱ|y).

(ii) Under WSEL function, the Bayesian estimation of ϱ and its posterior risks are
respectively as

ϱ̂B2(y) = E[ϱ−1|y]−1,

and

PR2(ϱ̂) = E(ϱ|y)− E[ϱ−1|y]−1.

(iii) Under PL function, the Bayesian estimation of ϱ is computed as

ϱ̂B3(y) =
√
E[ϱ2|y],

and the associated expected posterior risk is given by

PR3(ϱ̂) = 2[
√
E(ϱ2|y)− E(ϱ|y)].

(iv) Under KL function, the Bayesian estimation of ϱ is given by

ϱ̂B4(y) =

√
E(ϱ|y)

E(ϱ−1|y)

and its expected posterior risk is of the form

PR4(ϱ̂) = 2[
√

E(ϱ|y)E(ϱ−1|y)− 1].

3 E-Bayesian estimation of traffic intensity

Consider the power prior distribution presented in (3). For 0 < a < 1, we have dπa(ϱ)
dϱ =

a(a− 1)ϱa−2 < 0 and πa(ϱ) is a decreasing function of ϱ, so this prior distribution meets
the structure of hierarchical prior distribution proposed by Han (1997). Following Han
(1997), the expected Bayesian (E-Bayesian) estimation of ϱ is defined as

ϱ̂EB =

∫
D
ϱ̂B(a)π(a)da = E[ϱ̂B(a)], (5)
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where D is the domain of hyperparameter a and π(a) is the prior density of a over D.
In the following Lemma, we compute the E-Bayesian estimators of ϱ under the pro-

posed loss functions.

Lemma 2. Assuming a uniform (0,1) distribution for hyperparameter a, the Bayesian
and E-Bayesian estimators of ϱ under different loss functions are obtained as follows:
(i) Under the SEL function, the Bayesian estimator of ϱ is given by

ϱ̂B1(a) =
s+ a

s+ a+ n+ 1
, (6)

and the corresponding E-Bayesian estimator is

ϱ̂EB1 = 1− (n+ 1) ln

(
s+ n+ 2

s+ n+ 1

)
. (7)

(ii) Using the WSEL function, the Bayesian estimator of ϱ is computed as

ϱ̂B2 =
s+ a− 1

s+ a+ n
, (8)

and the corresponding E-Bayesian estimator is

ϱ̂EB2 = 1− (n+ 1) ln

(
s+ n+ 1

s+ n

)
. (9)

(iii) For the PL function, the Bayesian estimator of ϱ is

ϱ̂B3 =

√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
, (10)

and the associated E-Bayesian estimator is obtained as

ϱ̂EB3 =

∫ 1

0

√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
da. (11)

(iv) For the PL function, the Bayesian estimator of ϱ is

ϱ̂B4 =

√
(s+ a)(s+ a− 1)

(s+ a+ n)(s+ a+ n+ 1)
, (12)

and the associated E-Bayesian estimator is obtained as

ϱ̂EB4 =

∫ 1

0

√
(s+ a)(s+ a− 1)

(s+ a+ n)(s+ a+ n+ 1)
da. (13)

Proof. (i) Using the posterior density of ϱ given in (4), the Bayesian estimation of ϱ
under the SEL function is calculated as

ϱ̂B1 = E(ϱ|y) =
∫ 1

0
ϱπa(ϱ | y)dϱ =

∫ 1
0 ϱs+a(1− ϱ)n

B(s+ a, n+ 1)
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=
B(s+ a+ 1, n+ 1)

B(s+ a, n+ 1)
=

s+ a

s+ a+ n+ 1
.

Under SEL function and the prior density of a, the E-Bayesian estimator of ϱ will be

ϱ̂EB1 =

∫
ϱ̂B1(a)π(a)da =

∫ 1

0

s+ a

s+ a+ n+ 1
× 1 da

= 1− (n+ 1)

∫ 1

0

1

s+ a+ n+ 1
da

= 1− (n+ 1) ln

(
s+ n+ 2

s+ n+ 1

)
.

(ii). We have

E(ϱ−1 | y) =

∫ 1

0
ϱ−1πa(ϱ | y)dϱ =

∫ 1

0

ϱ−1ϱs+a−1(1− ϱ)n

B(s+ a, n+ 1)
dϱ

=
B(s+ a− 1, n+ 1)

B(s+ a, n+ 1)
=

s+ a+ n

s+ a− 1
.

Therefore, the Bayesian estimation of ϱ under the WSEL function is given by

ϱ̂B2 = [E(ϱ−1 | y)]−1 =
s+ a− 1

s+ a+ n
.

The E-Bayesian estimator of ϱ can be obtained as

ϱ̂EB2 =

∫
ϱ̂B2π(a)da =

∫ 1

0

s+ a− 1

s+ a+ n
da

= 1− (n+ 1)

∫ 1

0

1

s+ n+ a
da

= 1− (n+ 1) ln

(
s+ n+ 1

s+ n

)
.

(iii). Using the fact

E(ϱ2 | y) =

∫
ϱ2πa(ϱ | y)dϱ =

∫ 1
0 ϱ2ϱs+a−1(1− ϱ)n

B(s+ a, n+ 1)
dϱ

=
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
,

the Bayesian estimation of ϱ under the PL function is given by

ϱ̂B3 =
√

E(ϱ2 | y) =

√
(s+ a+ 1)(t+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
.

Therefore, the E-Bayesian estimator of ϱ is as

ϱ̂EB3 =

∫
ϱ̂B3π(a)da =

∫ 1

0

√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
da.
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(iv). Using the relations E(ϱ|y) and E(ϱ−1|y) computed in sections (i) and (ii) of proof,
the the Bayesian estimation of ϱ under the KL function is given by

ϱ̂B4 =

√
E(ϱ | y)

E(ϱ−1 | y)
=

√
(s+ a)(s+ a− 1)

(s+ a+ n)(s+ a+ n+ 1)
.

Thus, the associated E-Bayesian estimator of ϱ is obtained to be

ϱ̂EB4 =

∫
ϱ̂B4π(a)da =

∫ 1

0

√
(s+ a)(s+ a− 1)

(s+ a+ n)(s+ a+ n+ 1)
da.

4 Expected posterior risk of E-Bayesian estimators

In this section, we compute the expected posterior risk (E-posterior risk) of E-Bayesian
estimators for comparison purposes. Following Han (2021), the E-posterior risk is defined
as

ER(ϱ̂EB) =

∫
D
PR(ϱ̂B)π(a)da,

where PR(ϱ̂B) is the posterior risk of Bayesian estimator ϱ̂B.

In the following Lemma, the E-posterior risk of E-Bayesian estimators are computed
under different loss functions.

Lemma 3. The posterior risk of Bayesian estimators and the corresponding E-posterior
risks under the proposed loss functions are given as foloows:
(i). Under the SEL function, the posterior risk of Bayesian estimator ϱ̂B1 is

PR(ϱ̂B1) =
(s+ a)(n+ 1)

(s+ a+ n+ 2)(s+ a+ n+ 1)
,

and the corresponding E-posterior risk is given by

ER(ϱ̂EB1) =

∫ 1

0

(s+ a)(n+ 1)

(s+ a+ n+ 2)(s+ a+ n+ 1)
da.

(ii). The posterior risk of Bayesian estimator ϱ̂B2 using the WSEL function is

PR(ϱ̂B2) =
n+ 1

(s+ a+ n+ 1)(s+ a+ n)
,

and the corresponding E-posterior risk is given by

ER(ϱ̂EB2) =

∫ 1

0

n+ 1

(s+ a+ n+ 1)(s+ a+ n)
da.
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(iii). The posterior risk of Bayesian estimator ϱ̂B3 using the PL function is

PR(ϱ̂B3) = 2

[√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ 1)
− s+ a

s+ a+ n+ 1

]

and its E-posterior risk is given by

ER(ϱ̂EB3) = 2

∫ 1

0

[√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
− s+ a

s+ a+ n+ 1

]
da.

(iv). The posterior risk of Bayesian estimator ϱ̂B3 under the KL function is

PR(ϱ̂B4) = 2

[√
(s+ a)(s+ a+ n)

(n+ a+ 1)(s+ a− 1)
− 1

]
,

and its E-posterior risk is given by

ER(ϱ̂EB4) = 2

∫ 1

0

[√
(s+ a)(s+ a+ n)

(n+ a+ 1)(s+ a− 1)
− 1

]
da.

Proof. (i). Under SEL function we have,

PR(ϱB1) = V ar(ϱ | y) = E(ϱ2 | y)− (E(ϱ | y))2

=
(s+ a+ 1)(t+ a)

(n+ s+ a+ 2)(n+ s+ a+ 1)
−
(

s+ a

s+ a+ n+ 1

)2

=
(s+ a)(n+ 1)

(s+ a+ n+ 2)(s+ a+ n+ 1)2
.

Therefore, the E-posterior risk is given by

ER(ϱ̂EB1) =

∫ 1

0
PR(ϱ̂B1)π(a)da =

∫ 1

0

(s+ a)(n+ 1)

(s+ a+ n+ 2)(s+ a+ n+ 1)2
da.

(ii). The E-posterior risk of E-Bayesian estimator ϱ̂EB2 under WSEL function is given
by

R(ϱ̂B2) = E(ϱ | y)− (E(ϱ | y))−1

=
s+ a

s+ n+ a+ 1
− s+ a− 1

s+ a+ n
=

n+ 1

(s+ a+ n+ 1)(s+ a+ n)
.

Thus, the E-posterior risk is obtained to be

ER(ϱ̂EB2) =

∫ 1

0
PR(ϱ̂B2)π(a)da =

∫ 1

0

n+ 1

(s+ a+ n+ 1)(s+ a+ n)
.da.
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(iii). Using the PL function, the E-posterior risk of E-Bayesian estimator ϱ̂EB3 is given
by

PR(ϱ̂B3) = 2[
√
E(ϱ2 | y)− E(ϱ | y)]

= = 2

[√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ 1)
− s+ a

s+ a+ n+ 1

]
Thus, the E-posterior risk is obtained to be

ER(ϱ̂EB3) = 2

∫ 1

0

[√
(s+ a+ 1)(s+ a)

(s+ a+ n+ 2)(s+ a+ n+ 1)
− s+ a

s+ a+ n+ 1

]
da.

(iv). Similar to the above, under KL function, we get

PR(ϱ̂B4) = 2
[√

E(ϱ | y)E(ϱ−1 | y)− 1
]

= 2

[√
s+ a

s+ a+ n+ 1
× s+ a+ n

s+ a− 1
− 1

]
.

The associated E-posterior risk can be calculated as

ER(ϱ̂EB4) = 2

∫ 1

0

[√
(s+ a)(s+ a+ n)

(s+ a+ n+ 1)(s+ a− 1)
− 1

]
da.

5 Comparison of proposed estimators

In this section, we conduct a simulation study to campare the E-Bayesian estimators
of ϱ in terms of the expected posterior measure. To do this, the following steps are
considered:
(1) Generate random observations y1, ..., yn from the Ge(1− ϱ) distribution with p.m.f.
given in (1) with ϱ = 0.4, 0.6, 0.8.
(2) Compute the E-Bayesian estimates ϱ̂EBi, i = 1, 2, 3, 4 and corresponding expected
posterior risks for n = 5, 15, 40, 80, 100.
(3) Repeat the above steps M = 104 times and compute the E-Bayesian estimates (EB)
and associated estimated expected posterior risks (EER) respectively as

EB(ϱ̂EBk) =
1

M

M∑
i=1

ϱ̂EBk, EER(k) =
1

M

M∑
i=1

ER(ϱ̂EBk).

Tables 1-3 present the values of ϱ̂EBi, i = 1, 2, 3, 4 and the associated estimated ex-
pected posterior risks for different values of traffic intensity. In view of these tables, we
conclude the following observations:
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Table 1: The E-Bayesian estimates (EB) and associated estimated expected posterior risks (EER) based
on true value of ϱ = 0.4.

n ϱ̂EB1 ϱ̂EB2 ϱ̂EB3 ϱ̂EB4 EER(1) EER(2) EER(3) EER(4)

10 0.372754 0.333505 0.389552 0.352042 0.011674 0.039249 0.033598 0.201597

20 0.386834 0.368021 0.395559 0.377267 0.006444 0.018814 0.017449 0.059349

40 0.391998 0.382753 0.396453 0.387344 0.003410 0.009244 0.008911 0.025609

60 0.393607 0.387477 0.396599 0.390529 0.002316 0.006130 0.005983 0.016413

80 0.396041 0.391481 0.398280 0.393754 0.001752 0.004560 0.004478 0.011962

100 0.396098 0.392450 0.397895 0.394270 0.001410 0.003647 0.003595 0.009491

Table 2: The E-Bayesian estimates (EB) and associated estimated expected posterior risks (EER) based
on true value of ϱ = 0.6.

n ϱ̂EB1 ϱ̂EB2 ϱ̂EB3 ϱ̂EB4 EER(1) EER(2) EER(3) EER(4)

10 0.560471 0.541036 0.569243 0.550584 0.009062 0.019435 0.017543 0.047515

20 0.581497 0.572698 0.585692 0.577075 0.004666 0.008798 0.008391 0.016672

40 0.589563 0.585351 0.591622 0.587453 0.002383 0.004212 0.004118 0.007406

60 0.591822 0.589044 0.593190 0.590431 0.001599 0.002778 0.002737 0.004804

80 0.594188 0.592127 0.595206 0.593157 0.001198 0.002060 0.002037 0.003532

100 0.594775 0.593131 0.595590 0.593953 0.000961 0.001644 0.001629 0.002806

(1) For each sample size n, the values ϱ̂EBi, i = 1, 2, 3, 4 are close to each other. More-
over, the estimated values of E-Bayesian estimates approaches the actual value of the
traffic intensity when n increases.
(2) We get the following relation:

ϱ̂EB2 < ϱ̂EB4 < ϱ̂EB1 < ϱ̂EB3.

(3) The values of EER decreases when the sample size increases.
(4) For fixed n and ϱ, we have the following relation for EER values:

EER(1) < EER(3) < EER(2) < EER(4).

Thus, the E-Bayesian estimate ϱ̂EB1 is better than other E-Bayesian estimates in terms
of expected posterior risk measure.

6 Concluding remarks

Th Bayesian, E-Bayesian and corresponding E-posterior risks of traffic intensity in a
M/M/1 system was presented in this paper. The Bayesian estimations are derived
using a power prior distribution under four loss functions and the related E-Bayesian
estimations are obtained using a robust prior of hyperparameter of considered prior
distribution. The E-posterior risks of E-Bayesian estimators are provided. A comparison
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Table 3: The E-Bayesian estimates (EB) and associated estimated expected posterior risks (EER) based
on true value of ϱ = 0.8.

n ϱ̂EB1 ϱ̂EB2 ϱ̂EB3 ϱ̂EB4 EER(1) EER(2) EER(3) EER(4)

10 0.769207 0.763789 0.771776 0.766490 0.003733 0.005418 0.005138 0.007694

20 0.785087 0.782762 0.786223 0.783923 0.001739 0.002325 0.002272 0.003066

40 0.792321 0.791239 0.792856 0.791780 0.000838 0.001082 0.001070 0.001387

60 0.794777 0.794074 0.795127 0.794426 0.000551 0.000703 0.000698 0.000894

80 0.796602 0.796085 0.796860 0.796343 0.000408 0.000518 0.000515 0.000655

100 0.797358 0.796947 0.797562 0.797152 0.000325 0.000411 0.000409 0.000518

of E-Bayesian estimations in terms of E-posterior risks is performed. The results show
that the E-Bayesian estimation associated with SEL function has good performance and
can be preferd.
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